
StrataCode Do more than code - StrataCode

Hi. My name is Jeff Vroom and I'd like to introduce StrataCode, a code-processing tool for building complex software efficiently.

• Mostly solo project by Jeffrey Vroom

• Layers to organize code. Build declarative, efficient apps

• Software Architect: AVS, ATG, Adobe Flex Data Services

• Last ten years consulting and building StrataCode

• Looking for ideas to make it better, projects to build, and more partners to help

• Open source if there’s enough support

Introducing StrataCode

After a long career building frameworks and applications, I started from scratch building a platform to build more declarative applications using layers to organize code.

It's been a lot of work, but I finally feel more productive building with it than anything else and am happy to share this preview. I'm looking for developers to try it out,
feedback on improvements, projects to build, and more partners to help me build something awesome.

If there's enough support, it would make a great open source project.

Here’s an overview of the design.

Code processing framework

class Foo {
 int bar() {
 if(a) {}
 }
}

Grammar

JavaModel

ClassDecl

MethodDef

IfStatement

Code.java: Language features (AST):

Parse

Update code Property changes

Parse

StrataCode at the lowest level is a code-processing framework that provides an easy way to add programming language grammars that read, modify, and write source.
Each grammar defines an API that exposes the features of that language. When features are changed through the API, incremental updates are applied back to the
source. This design makes it possible to write code that processes code a lot faster.

Multi-process build/run from one layer stack

Run layers Process 1 Process 2 Process 3

Layers organize into separate processes

Install dependencies -> organize processes -> generate source -> compile -> package -> deploy

The code-processing framework is used in a layered build system that supports the entire lifecycle of code, from configuring, to building, testing, packaging and
deploying a multi-process system.

Running process

object temperature extends Converter {
 value1 = 0;
 value2 :=: value1 * 9.0/5.0 + 32;
 unit1 = “Celsius”;
 unit2 = “Fahrenheit”;
 title = “Temperature”;
}

Code.java:

Live editingRefresh

Live programming for better management UIs

And, once an application is running, it supports refresh to pickup code changes. There’s also a management UI framework that can do live-edits.

Layered languages - extensions to Java

.sc -> StrataCode language

also: .sct, .schtml, .scxml, sccss, scsh formats - JSP-like

integrated into the language for when a file is ‘mostly text’

modifies

To get the maximum benefit of the layered architecture, StrataCode adds languages that work like Java and JSP but also support layering of types for organizing code.

SharedForm SharedWidget

WebForm WebWidget MobileForm MobileWidget

SharedModule

WebModule MobileModule

extends extends

Modules using o/o inheritance

• More, longer type names

• Wrong type in code e.g. need WebForm but have

SharedForm

Form Widget

Form Widget

Form Widget

WebLayer

MobileLayer

SharedLayer

Layers using modify

• Code naturally organized by dependencies

• Better reuse, readability, refactorability

extends

Separating code by dependencies

Layers are particularly useful for separating code by dependencies to improve reuse, allow customization, and simplify designs. Using modules, designs become more
complex and are harder to refactor.

Product Category

Product Category

Domain model

Many uses for layers

UI/SQL

Separate UI/Persistence

Server DBConnection

Server DBConnection

Server/DB Framework

Config/devops

Separate configuration

Promotion Product

Promotion Product

Ecommerce domain model

Merchandiser

Business rules

And more: client/server, devops configuration + code, project configuration rules, testing, localization, style/
design, plugins, inversion of control, 3rd party customizations, microservices, security sandboxes, dynamic/
compiled code, A/B testing

The main reason I spent so much time building StrataCode is the potential I see for layers to improve so many aspects of software development, like separating
application code from UI and persistence. And for improving the potential for customizing applications by making it easy to separate configuration and business rules as
needed.

Layered project organization

• Written in dynamic StrataCode

• Static typed, IDE support

• Improve customization intent

• Simpler project directories

Layer definition file

And layers are an amazing way to organize projects. They offer flexible merging of directory trees, reducing the amount of copying at the start, and can override anything
in a manageable way.

The layer definition file replaces typical build config and is written in dynamic StrataCode. The layer itself defines a type-safe sandbox for the code inside with default
imports and annotations. Rather than a lot of project boilerplate, a layer directory may include just a few well-named files so that more team members can manage their
slice of the system.

 a := b

Data binding

 a :=: b

 a =: b

Components

init, start, validate

Properties

• get/set conversion

• change events

• mix compiled and

dynamic properties in
one type

 a =: b()

eval

Templates

• dynamic text - sct, scxml, sccss,

• build languages on top (like schtml),

• stateful and stateless support

• JSP operators, but more like an extension to Java

Features for declarative programming

And for building more declarative apps, the StrataCode languages also support data binding, components, properties, and templates on top of Java. Files are converted
to readable Java before compiling making it easy to debug and use in existing projects.

IntelliJ plugin
Java-like editing, debugging for sc, sct, schtml, scj, scr in all frameworks

There's a full featured IntelliJ plugin that supports all of the StrataCode file formats and a straightforward way to add new ones.

Code processing of language features

Annotations
Perform code processing on a type when an annotation is set - ‘annotation layers’ for compiled Java

parent/child relationships

Implement nested objects with a 3rd party library - code templates for compiled, IDynManager for dynamic

Full featured API, code processing engine, with runtime support

Supports compiled or source type systems. Full type indexing for both IDE or runtime. Optional
‘liveDynamicTypes’ mode to track object instances of certain types for management UIs.

IntelliJ plugin support built in

Usually no extra work to support framework features in the IDE

Much more - carefully designed hooks for framework developers

For framework developers, there are just the right hooks using annotations, code-processors and more.

3rd party integrations

android, swing, junit, jdbc, servlets, opengl, opencv, jetty, jpa,

StrataCode web framework

Experimental: wicket, gwt

Current frameworks

There are a number of frameworks and integrations that build on top of well-known Java libraries that demonstrate these features.

StrataCode web framework

Rule oriented templates

Stateless Stateful

Converted to an output method Converted to reactive components

For web applications, the StrataCode web framework changes the game for Java in the browser. It supports declarative, rule-oriented web page templates, built from tag
objects. Each tag object is converted into either a stateless output method, or a reactive component tree that refreshes incrementally using events.

Client (js)

Server (java)

Run layers

web/js/module1.js, module2.js

js/*.js

java/*.java

java/*.java

split into

client/server

generates

converts to

packages

generates

client/server (isomorphic)

http server config for *.html

Three ways to deploy web components

Client (js)

web/js/module1.js, module2.js

js/*.js

java/*.java, web/*.html

generates

converts to

packages

client only
Server (java)

js/stags.js

java/*.java
generates

server only

http server config

for *html

Tag objects can run in three different ways. In client only mode, they generate static html and javascript files at build time.

In client/server mode, the server renders HTML for fast initial page loads, then javascript versions of tag objects are loaded for interactivity.

In server only mode, the server renders HTML and sends only a small Javascript file to send events to the server and receive updates to the HTML.

Special tag attributes
extends - inherit attributes + body from another tag

visible - add/remove tag from page

class, style - set to expressions for dynamic logic
repeat - iterate tag
replaceWith - substitute a different tag

DOM events - click, mouseDown/Up/Move, keyDown/Up, focus/blur
DOM properties - clientWidth/Height, offsetTop/Left/Width/Height

Merging - tagMerge, bodyMerge, addBefore, addAfter, orderValue
scope - change lifecycle of the tag/page: e.g. request, window, appSession, …
exec - run tag on client, server, or both - by default inherits from parent tag or app default

(and much more)

abstract - define tag macros

There are a number of features available as attributes for tag objects in each of the different modes.

Run layers

client

serversplit into client + server processes

layers synchronized

server method

call to method
automatic

remote call

Data synchronization + auto RPC

Async call with reverse data binding

overlapping

layers

server only

layers

Web apps can use data sync and data binding with RPC to make client/server development more seamless, and deployment style more flexible. Shared layers between
client and server replace the need for a separate protocol definition. Remote method calls are detected, validated, and handled automatically using data binding, code-
gen, and apis. This way of organizing code for client/server apps reduces code overall and makes it easier to change process boundaries.

compiled

dynamic
on the fly changing code, runtime config, optimized for ‘run once’

readable, debuggable Java

Flexible runtime that evolves and scales efficiently

One syntax - two ways to run layers and types:

Mix compiled and dynamic features in one type - change the boundary as needed

All frameworks support dynamic types and layers for fast round trip times, even for large projects and components that have state. This feature opens the door for a
whole new class of live edit management UIs and customization tools that work on large code bases.

Management UI framework
• Build UIs from domain objects

• Portable: desktop, web

• Edit configuration, rules - in place or in a new layer

• Create instances, types, properties, layers

• Navigate by type name, by layer or both

• Layers - multiple views on the same type

And StrataCode includes such a management UI framework that can be used with any web or swing application. It builds forms right from the application domain model
types.

There are three views….

Instance View
View, edit, create instances in the running application

Instance view allows the creation of new instances and editing of existing ones.

Type view
Edit property initialization, data binding rules, add properties

Updates source files incrementally for mixed tool/developer workflows

Type view changes configuration, edits data binding rules, and adds new properties on the fly. Change code in-place or adding the change to a new layer.

Code view
Mini IDE (using codemirror in the browser, rtext in swing)

Edit-time errors, syntax highlighting, code-hinting

Code view edits source code directly using a mini-IDE.

Navigate by type or by layer

merged view

file system view

There are two ways to navigate types and instances in the management UI: by type name, or with layers, showing the file organization.

Versatile test scripts, command line

• Line-oriented StrataCode

• IDE support

• Target one or more processes

• Automatic remote methods

• Layering, nesting with ‘include’

• Script mode - edit instances

• Edit mode - edit types

Use the scr format for test scripts or for command-line control over a multi-process app.

Learn more
Learn more at www.stratacode.com

Contact jeff@jvroom.com

See the status page for how we are doing

Examples, documentation, articles

Ideas for improvements?

Build something together?

That's the end of the overview. Check the website for current status and more information.

Let me know what you think and if you or are interested in teaming up to build something awesome with StrataCode.

Thanks for watching.

http://www.stratacode.com
mailto:jeff@jvroom.com

